THE ENGINE POWER

Have you already flipped through the catalog of a major car manufacturer? Each model is available in several versions, the differences focusing on engine power. The choice is vast : 100 hp, 120 hp, 150 hp...

What these numbers really mean? What is power? How to express it? What is the relationship between power and speed? Here are some answers...

Power and Energy

Generally, the power means production, consumption, or the energy conversion per unit of time.

For a car, this energy is primarily chemical in nature (burning of fuel), and then kinetic (acceleration on a flat road) or gravitational (sloped road).

The power delivered by an engine is therefore equal to the energy gained per unit of time, but also to the energy consumed during the same period of time.

The weight / power ratio

The power determines the acceleration, climbing capability and, incidentally, the top speed of land vehicles.

The acceleration means the ability of communicating energy to a mass (kinetic energy in the first case, gravitational energy in the latter), that means that the engine power must be assessed in terms of the mass of the vehicle.

In other words, more than the raw power, the weight / power ratio is the real indicator of the performance of a vehicle.

Some examples

First example: comparing two cars, one of mass 1,000 kg and 100 hp power, the other of mass 1,500 kg and power 150 hp; weight / power ratio (here equal to 10 kg per horse) shows that their performances in acceleration or slope will be very similar.

Second example: a 40 tons truck which accelerates from 0 to 22 mph (10 m.s⁻¹) in 10 seconds mobilizes an average power of 270 hp. The same rate of change realized in 20 seconds mobilizes an average power of 135 hp.

Third example: a 40 tons truck climbing a slope of 10 % at a speed of 22 mph (10 m.s⁻¹) mobilizes an instant power of 540 hp. The same slope climbed at a speed of 11 mph

(5 m.s⁻¹) mobilizes an instant power of 270 hp (air resistance and rolling resistance are not taken into account).

Naturally, the instantaneous consumption is a function of the required performances.

The power must be assessed in terms of the mass of the car, here 200 hp and 1,160 kg, a weight / power ratio equal to 5.8 kg / hp; to benefit from a favorable ratio, a 1,800 kg mass car should be equipped with a 310 hp engine.

Definition and units

The international unit of power is the watt (symbol W) or kilowatt (kW symbol): one watt is defined as one joule of work done in one second.

Specifically:

- one watt is the power required to move a force of one N over a distance of one meter in one second.

- one watt is the power required to lift a glass of water to one meter high in one second.

An equivalent definition applies to automobile engines: the power is the product of torque (expressed in Nm) by rotation speed (expressed in rad.s⁻¹). So, one watt is the power of an engine that delivers a torque of 1 Nm with a rotational speed of one radian per second⁽¹⁾.

Expression of power

It is still very common to express the power of an engine by horsepower (hp symbol), referring to the physical abilities of the animal.

Indeed, in a show jumping, a good horse is supposed to lift the body of a man of 75 kg (165 lb) to one meter high in one second.

A quick calculation shows that it corresponds to a power equal to 735.5 watts exactly. Therefore, the conversion of the units is easy.

Measurement or calculation?

How does one determine the engine power? You cannot measure it but you can calculate it, by combining torque and rotation speed.

A bench test consists of a brake and a rev counter: once the engine started at full speed, the operation is to gradually apply the brake until the operating speed of the engine has stabilized, the throttle remaining wide open.

Indeed, a steady speed means that the engine torque is exactly equal to the braking torque: it suffices to know the intensity of the braking force and the length of the radius on which it applies to deduce the value of the engine torque.

In other words, what is called a bench test measures the maximum torque and the way it evolves according to the engine rotation speed. The power results of a calculation, that is the product of these two quantities⁽²⁾.

Some ideas about the power

More than the power, the torque and particularly the speed at which it is available is the essential feature of a car motor (see ADILCA folder '*engine torque*').

This confusion between power and torque is the source of many misunderstandings.

Thus the power claimed by the manufacturers is always a maximum value, available only at the specified rotation speed ('red zone' on the rev counter) and assuming that the throttle is wide open. These two conditions are rarely met, and rarely for a longtime!

In any other situation, only one part of the power is available, but never the whole. In other words, most drivers who merely travel at reasonable engine rotation speed will never require the advertised horsepower.

Figures that speak

Take for example the Renault 2.0 DCI 150 engine whose characteristics are:

- maximum power 110 kilowatts (150 hp) at 4,000 rpm

- maximum torque 340 Nm at 2,000 rpm

A quick calculation shows that at maximum torque speed (2,000 rpm), the available power is only 71 kW (97 hp)! And assuming that the driver keeps the throttle full open! If it is not the case, only a part of the 97 horses will be at work.

Torque (green) and power (red) of the 2.0 DCI 150 Renault engine (Renault document).

An other rapid calculation shows that at maximum rotation speed (4,000 rpm), the engine torque available is only 260 Nm! Between power and torque, you must choose!

Power and transmission

Transmission's main role is to increase the torque by speed reduction of the wheel shafts and *vice versa*. The power is the product of a couple with an angular velocity, it demonstrates that it remains independent of the selected transmission ratio⁽³⁾.

In other words, if we disregard the loss due to the rotation of the transmission (gearbox, differential), the available drive wheels power is always strictly identical to the one available to the crankshaft. Hence the amount of power only depends on the engine rotation speed and the throttle opening.

A curious law

Another definition of power is the energy required to maintain a constant speed.

Indeed, any land vehicle (bicycle, car, train ...) moving on a flat road mobilize a certain power corresponding to the instantaneous work of the two resistance forces: rolling

resistance and air resistance.

But in this case, the power is expressed as the product of a force by a speed, while the air resistance varies as the square of the speed.

We deduce that the power required to overcome air resistance varies as the cube of the speed!

Concretely, it means that this resistance absorbs 8 times more power at 60 mph than at 30 mph, 27 times more power at 90 mph than at 30 mph !

Power and speed

Some quick calculations that take into account the actual characteristics of land vehicles indeed confirm that small differences in speed actually induce large differences in power.

A car⁽⁴⁾ traveling on a flat road at a constant speed of 65 mph (30 m.s⁻¹) mobilizes an output of about 35 hp. The same car traveling at 80 mph (35 m.s⁻¹) should mobilize a power of about 50 hp! That means 50 % of extra power for 15 mph gain only!

A truck⁽⁵⁾ that runs on a flat road at a constant speed of 50 mph (22 m.s⁻¹) mobilizes an output of about 120 hp. The same truck traveling at 55 mph (25 m.s⁻¹) should mobilize a power of 160 hp! That means 1/3 more power for 5 mph gain only!

Power and fuel consumption

Every driver should keep in mind that the requested power also reflects the rate at which the fuel is consumed.

Conclusion

Power can be defined as the speed of energy consumption.

The power claimed by the manufacturers is a maximum value that is virtually never used by drivers.

However, the power required to maintain a steady speed is a key variable since it varies roughly as the cube of the speed.

This means that the more we want to go fast, the more we must mobilize some engine power, but in a measure unrelated to the gain obtained.

Additional remarks

(1) Newton meter (Nm symbol) is defined as the torque produced by a force of 1 N exerted on a 1 meter long lever arm; the radian (rad symbol) is defined as the central angle intercepting an arc of length equal to the radius of the circle; 1 rotation = $360^\circ = 2\pi$ radians = 6.28 radians, where 1 radian = 57.3 degrees.

(2) The engine torque is measured at the end of the crankshaft, it means that the torque and power values specified on the technical data do not take into account the resistance related to the rotation of the transmission (gearbox shafts, shaft transmission, differential, axle shafts). This resistance absorbs about 10% of the initial power.

(3) The power is defined as the ratio of energy and time, it can be no creation or spontaneous energy loss. Hence the general principle that conservation therefore also applies to the power. A principle often understood backwards, because it is precisely by virtue of this principle that the transmission can generate a torque multiplication as equivalent rotation speed reduction (or the reverse). In other words, at constant power, the transmission allows the distribution of energy, not in time but in space.

(4) Car features: frontal 2.5 m²; Cx 0.35; rolling resistance (including transmission) 350 N, supposedly independent of speed value.

(5) Truck features: frontal surface 10 m^2 ; Cx 0.9; 12 tires each supporting an average load of 3.3 tons and generating a rolling resistance (including transmission) of 25 N / t, assumed to be independent of speed value.

ASSOCIATION ADILCA

www.adilca.com

* * *

RELATIONSHIPS BETWEEN PHYSICAL QUANTITIES

Kinetic energy

$E = \frac{1}{2} M \cdot V^2$

E: kinetic energy, expressed in J
M: mass, expressed in kg
V: speed, expressed in m.s⁻¹
consistency of the units: E = kg . (m.s⁻¹)² = kg . m².s⁻² = J

<u>Example</u>: calculate the kinetic energy of a 3,080 lb (1,400 kg) mass car traveling at a speed of 65 mph (30 m.s⁻¹):

 $\mathbf{E} = \frac{1}{2} \times 1,400 \times 30^2 = 700 \times 900 = 630,000 \text{ J}$

Gravitational energy

$E = M \cdot g \cdot H$

E: gravitational energy, expressed in J M: mass, expressed in kg g: gravitational acceleration value (Earth : $g = 9.8 \text{ m.s}^{-2}$) H: height, expressed in m consistency of the units: $E = kg \cdot m.s^{-2} \cdot m = kg \cdot m^2.s^{-2} = J$

Example: calculate the energy required to lift a mass of 3,080 lb (1,400 kg) to 1,000 meters high:

Power

B = E / T

Example: calculate the power required to produce a kinetic energy of 600 kJ in one minute (60 seconds):

Engine power

$B = T \cdot \omega$

B: engine power, expressed in W
 T: engine torque, expressed in Nm
 ω: angular velocity, expressed in rad.s⁻¹
 consistency of the units: B = N.m. s⁻¹ = kg.m⁺¹.s⁻².m⁺¹.s⁻¹ = kg.m².s⁻³ = W
 (the radian is dimensionless)

Example: calculate the power of an engine delivering a torque of 250 Nm at 1,800 rpm (190 rad.s⁻¹):

Power absorbed by speed

 $\mathbf{B} = \mathbf{F} \cdot \mathbf{V}$

B: power, expressed in W
F: resistance force, expressed in N
V: speed, expressed in m.s⁻¹
consistency of the units: B = kg.m⁺¹.s⁻² . m⁺¹.s⁻¹ = kg.m².s⁻³ = W

<u>Example</u>: calculate the power absorbed by a resistance force of 500 N when the car runs at a speed of 65 mph (30 m.s^{-1}) :

B = 500 x 30 = 15,000 **W**

Power absorbed by slope

$\mathbf{B} = \mathbf{M} \cdot \mathbf{g} \cdot \mathbf{H} / \mathbf{T}$

B: power, expressed in W M: mass, expressed in kg g: gravitational acceleration value (Earth : $g = 9.8 \text{ m.s}^{-2}$) H: height, expressed in m T: duration, expressed in s consistency of the units: $B = \text{kg} \cdot \text{m}^{+1} \cdot \text{s}^{-2} \cdot \text{m}^{+1} \cdot \text{s}^{-1} = \text{kg.m}^2 \cdot \text{s}^{-3} = W$

Example: calculate the power required to lift a weight of 3,080 lb (1,400 kg) at a height of 1,000 m in 10 minutes (600 seconds):

B = 1,400 x 9.8 x 1,000 / 600 = 22,900 **W**

Conversion of units

1 hp = 735.5 W 1 kW = 1.36 hp

Example 1: an engine delivers 200 horsepower; express this power in kilowatts:

B = 200 x 735.5 = 147,000 W = 147 **kW**

Example 2: an engine delivers 73.5 kilowatts; express this power in horsepower:

B = 73.5 x 1.36 = 100 **hp**

ASSOCIATION ADILCA

www.adilca.com

* * *